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Project Overview – Goal and Objectives   
Goal 

Analyze air quality (AQ) impacts of climate change and various 
transportation and power sector GHG mitigation strategies in 2050 
 

Objectives 
1. Establish rigorous analyses methodologies and adapt state-of-the-art 

models to evaluate future scenarios in 2050 
 

2. Model air quality sensitivity to meteorological and boundary conditions 
affected by changes in global climate 
 

3. Develop spatially and temporally resolved criteria pollutant emissions due 
to GHG reduction strategies in the transportation sector 
 

4. Develop spatially and temporally resolved criteria pollutant emissions due 
to GHG reduction strategies in the power generation sector 
 

5. Assess air quality impacts due to GHG reduction strategies  
 
 



3/56 Advanced Power and Energy Program, Computational Environmental Sciences Laboratory - UCI 

1. Methodology Development 
 

2. Technology Assessment   
– Emphasis on power and transportation sectors 
 

3. Evaluation of GHG and AQ Impacts 
–  Development and assessment of scenarios 
 

 

4. Air quality model sensitivity 
– Impacts of climate change 

 

Outline – Tasks  
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Regions of Interest  
NEUS  

R1- CT, MA 
R2- PA, NY, NJ 

TX (R7)  CA (R9)  

Region selection focused on: 
• Existing and expected AQ challenges 
• Similar/differing contributing sources to facilitate comparison and identify trends 
• Current/expected focus on GHG mitigation and alternative technology deployment 

− CA, NEUS  
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Methodology  
Identify/Assess Mitigation Strategies 
• Power sector 
• Transportation sector 

Scenario Development 
• Range of potential futures 
• Project to 2050 

GHG Emission Impacts  

Pollutant Emission Impacts Spatial & Temporal 
Resolution 

Simulations of atmospheric 
chemistry and transport 

Air Quality Impacts 

Extensive review of relevant literature 
• Peer-reviewed publications  
• Government documents 
• Industry reports  

Initial Scenarios 
• Base Case (business-as-usual) 

− MARKet ALlocation (MARKAL) Model  
• Spanning/sensitivity cases  
• Identified/reported scenarios 
• Targeted areas of conflict/co-benefit 

Quantitative Impacts 
• MARKAL-derived growth factors  
• In-house methodologies  
• GREET Model (Trans.) 
• Literature review results   

Quantitative Impacts 
• MARKAL outputs 
• GREET Model (Trans.) 
• In-house methodologies 
• Literature review results 

Sparse Matrix Operator Kernel Emissions Model (SMOKE) 
− Gridded, speciated, & temporalized emissions  
− SCC-based emission growth factors  

• 2005 National Emissions Inventory   
• MARKAL– Base Case 
• Alternative Case(s)- Scenario-specific 

CMAQ Model 
• 12 km Resolution (4 km CA) 
• CB 05 Chemical Mechanism 
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1. Methodology Development 
 

2. Technology Assessment   
– Emphasis on power and transportation sectors 
 

3. Evaluation of GHG and AQ Impacts 
–  Development and assessment of scenarios 
 

 

4. Air quality model sensitivity 
– Impacts of climate change 

 

Outline – Tasks  
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Mitigation Strategies: Transportation  
Major drivers of transportation GHG emissions 

– Transport Demand  
• Vehicle miles traveled (VMT) 

– Energy Intensity of Travel 
• Unit fuel per mile (e.g., miles/gallon, kWhr, kg) 

– Fuel carbon intensity 
• Life cycle GHG emission per unit fuel (e.g., gCO2e/MJ) 

 

Challenges 
– Current vehicles reject >60% of potential fuel energy  

• Electric drive trains can improve efficiencies by 40-80% 
 

– Combustion of current fuels produces significant GHG emissions 
• Conventional motor gasoline: 93 g CO2eq /MJ 

 

– Significant growth in projected future transportation demand 
• Growth in population, economic sectors 
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Mitigation Strategy   Potential Reduction Reference(s)  
Efficiency Gains   
  Conventional 5 to 50%  [1-9] 

HEVs 37 to 87% [1-3, 7, 8, 10, 11] 

Hydrogen   

  HFCVs  14 to 99%  [1, 3, 7-24] 

Electricity 

  PHEVs 15 to 68% [1, 3, 7, 8, 10, 11, 25-31] 

  BEVs 28 to 99% [1, 7, 8, 10, 11, 32, 33] 

Biofuels        
Corn Ethanol +93 to 67% [4, 7, 11, 34-41] 

  Cellulosic Ethanol +50 to >100% [3, 4, 7, 11, 35, 37, 39, 42-46] 

Modal Shift   Total Demand Reduction   
  Various  0.4-2%  [47-50] 

Life cycle GHG emissions dependent on: 
– Vehicle propulsion efficiency, utilized fuel, and production pathway 

Mitigation Strategies: Transportation (LDV) 

• HDV 
– Increased vehicular efficiency  
– Transition to natural gas 
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Fuel Production 
• Spatial/temporal shift 

– PHEV, BEVs, HFCVs, Ethanol   
• Paradigm shift 

– PHEV, BEVs, HFCVs, Ethanol 
• Slight Reduction  

– HEV, PHEV,  
• Significant Reduction 

– PHEV, BEV, HFCV, Ethanol 
 

• Increase (potential) 
– PHEV, BEV, HFCV, Ethanol  

 

LDV Mitigation Strategies: AQ Impacts 

Fuel Distribution 
• Reduction in emissions 

– HEV, PHEV, BEV,  
 

• Slight increase (potential) 
– Ethanol  

 
 

Direct Vehicle 
• Moderate reduction 

– HEV, PHEV, Ethanol 
• Significant reduction 

– PHEV 
• Complete reduction 

– BEV, HFCV 
 

• Increase (potential)  
– Ethanol 
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LDV Mitigation Strategies: AQ Impacts 
AQ Impacts of PHEV Deployment - EXAMPLE 

– Generally modest, but significant, spatially-dependent improvements 
• Localized areas of worsening (power sector  impacts) 

 
 Study Direct 

NOx 
Direct 
SOx  

Direct 
VOC 

Direct 
CO 

Direct 
PM  

Secondary 
PM  Ozone 

EPRI 2007 D D D N/A I-10% D D -61% area 
I -1% area 

Kintner-Meyer 
2007 

I- Coal 
D-No coal 

I-75% area D-93%  D-98% I-67% area N/A N/A 

Parks 2007 D- small D-some 
I-some 

N/A N/A N/A N/A N/A 

Thompson 2009 I-night 
D- day 

I-Potential I-night 
D- day 

I-night 
D- day 

I-Potential 
D- Potential 

I- SOx related 
D- Potential 

D- 2-6 ppb 
Localized I < 8 ppb 

Brinkman 2010 D N/A N/A N/A N/A N/A D - <2-3 ppb 
Localized I- small 

I: Increase 
D: Decrease 
N/A: Not studied 
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Mitigation Strategies: Power Sector 
Major drivers of power sector GHG emissions 

– Power Demand  
• Total demand for power (e.g., MWhr) 

– Efficiency of generation 
• Unit power generated per unit fuel input (e.g., MWhr/MJ) 

– Fuel carbon intensity 
• Life cycle GHG emission per unit fuel (e.g., gCO2e/MJ) 

 
Challenges 

– Current U.S. system dominated by fossil fuel generation 
• 67%  provided from coal(42%) and natural gas (25%)[1]   

– Combustion of current fuels produces significant emissions 
• Coal: 944 g CO2eq /MJ 

– Significant growth in projected future power demand 
• Growth in population, economic sectors  

 
 

 
 

[1] U.S. EIA 2012 
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Life cycle emissions dependent on fuel/conversion pathway 
– Traditional Coal: 687-1689 gCO2eq/kWhr (Average: 944) [1-8]  

Mitigation Strategy   LCA Emissions 
[gCO2eq/kWhr] 

GHG Reduction 
[Average  Coal] Reference(s) 

Gas-Fired Power 390 to 682 28-76% [1-4, 9-13] 
Nuclear Power  3.5 to 220 77% to >>99% [3, 4, 9, 11, 14-20] 
Renewable Power     
  Wind 3 to 40 96-99% [3, 4, 10, 11, 21-31] 
  Solar PV 19 to 104 89-98% [4, 30, 32-40] 
  Solar CST 12 to 241 74-99% [41-46] 

Biopower -633 to 390 62-100%, 163-245% [3, 30, 47-64]  
Geothermal 5 to 57 94-99% [4, 27, 65, 66] 
Ocean 2-56 94-99% [27, 67, 68] 

CCS   
  Coal (PC) 41-844 50-94%  [6-8, 73-76] 

NG 47-280 59-88%  [7,8, 73-75] 

Mitigation Strategies: Power Sector 

• Efficiency Improvements (Generation, T&D, End-use) 
– Reduce required generation  ≤ 30% [77-85] 
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• NG considered viable power mitigation strategy in select regions 
– Significant projected expansion from increased domestic production  

 

• Concerns over GHG intensity of non-traditional reserves 
– Howarth et al., 2011Natural gas produces more GHG than coal (w/o combustion) 

• 20 year projection, 8% of total gas is leaked, vented, or unaccounted  
– Jiang et al., 2011 Marcellus shale gas (w/ combustion)  

• 3% more than conventional gas, 20-50% less than coal 

Mitigation Strategies: Natural Gas 

Source: James 2012 
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• AQ impacts generally favorable 
– Efficiency measures reduce emissions via reductions in generation  
– Transition to low carbon fuels generally associated with reductions in 

criteria pollutant emissions 
• Nuclear, renewable technologies 

 

• Dynamic power system impacts associated with intermittent 
nature of renewables necessitates co-deployment of back-up 
– Reduced net emission reductions of GHG and pollutants 

 
• Impacts associated with deployment of CCS 

– Efficiency losses from associated processes  
• Fleet-wide increases in emissions of some pollutants (e.g., NOx)  

– Impacts of capture processes reduces  
• Generally associated with decreases in PM, SOx  

Power Mitigation Strategies: AQ Impacts 
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AQ Impacts: CCS Deployment 
Potential for positive and negative impacts (species dependent) 

– Efficiency penalty necessitates increased fuel utilization 
• Increased criteria pollutant emissions fleet-wide (NOx ,CO) 

– Capture process effectively reduces some emissions 
• PM, SO2 

 
 Technology  Net CO2 

Reduction NOx SO2 CO VOC P.M. References 

Pulverized Coal 82-84% +(24)% -(61-96%) --- --- -(29-35)% [1,2,5] 

Super-critical P.C. 72-87% +(25-44)% -(61-95%) --- --- -(35-49)% [2,3,5] 

IGCC 81-88% +(18-20)% +(10-19%) --- --- -(0-41)% [2,3,5] 

NGCC 59-83% +(5-17)% +(0-21%) +0-19% +(0-17%) -42 to +25% [1-5] 

[1] Tzimas 2007, [2] Odeh & Cockerill 2008, [3] Singh 2011, [4] James, Ralph NETL 2012, [5] Sathre 2011 
 



23/56 Advanced Power and Energy Program, Computational Environmental Sciences Laboratory - UCI 

1. Methodology Development 
 

2. Technology Assessment   
– Emphasis on power and transportation sectors 
 

3. Evaluation of GHG and AQ Impacts 
–  Development and assessment of scenarios 
 

 

4. Air quality model sensitivity 
– Impacts of climate change 

 

Outline – Tasks  
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Initial base case developed via MARKAL (Dan Loughlin, EPA)   
– Represents energy system evolution to targeted horizon (2050)  

• EPA U.S. 9-region MARKAL database 
– Base case represents business-as-usual (BAU) assumptions 

• Calibrated to AEO 2010, projected to 2055 
 

 

Base Case Development  

Source: Loughlin et al. 2011 

Diagram of MARKAL Energy System (Representative)  
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Base Case Power Generation 
Significant regional variation in technology and fuels   

– Gas-fired generation growth substantial in most regions 
– Coal in TX and NEUS R2 (offset in NEUS by significant nuclear power) 
– CA and R1 relatively clean grid mixes 
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Regional demand increases significantly in Base Case 
– Fuel consumption off-set by vehicle efficiency improvements 
– Low penetrations of alternative fuel use in LDV sector    
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Base Case GHG Emissions  
General moderate increases in regional CO2 emissions in Base Case 

– NEUS R2 experiences moderate decrease   
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2050 Base Case Pollutant Emissions  
– Power  reductions in NOx, increases in other pollutant emissions (CSAPR)   
– Transportation significant reductions in LDV and HDV fleet emissions 

Base Case Pollutant Emissions  
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Species, spatial, and temporal-dependent increases & decreases 
– NOx: ≤ -900 kg/hr 
– Direct PM: ≤  +5 kg/hr 

Difference in NOx Emissions (2005 to 2050)  
 

Difference in PM Emissions (2005 to 2050) 

Base Case Pollutant Emissions (TX) 
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Difference in [PM2.5] (2005 to 2050) 

Base Case AQ from 2005 to 2050  
– Ozone: -16 to +7.5 ppb 
– PM2.5:  -3 to +.3 μg/m3  
   

Base Case Air Quality (TX)  

Difference in [O3] (2005 to 2050) 
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Outline – Tasks  
1. Development of methodologies to facilitate 

achievement of project objectives and goal  
 

2. Assessment of technologies comprising GHG 
mitigation strategies   
– Emphasis on power and transportation sectors 
 

3. Assessment of GHG and AQ impacts from 
mitigation strategy deployment  
– Power generation sector 
– Transportation sector 

 

4. Air quality model sensitivity 
– Meteorological and boundary conditions affected 

by changes in global climate and the global 
economy 
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Initial focus on power and transportation sectors 
– Other sectors have significant regional impacts 

• Industrial (TX), Residential (NEUS) 

Base 2050 GHG Emissions  
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AQ impacts driven by NOx reduction 
– Reductions in Peak [O3] 

• CA: -3 ppb 
• TX: -16 ppb 
• NEUS: -9 ppb 

– Reductions in Peak [PM2.5] 
• CA: -6 μg/m3 (localized) 
• TX: -2 μg/m3 
• NEUS: -6 μg/m3 

 

• Regional variation evident  
– CA impacts lower than other regions 

• High penetration of renewables 
– Impacts of coal power significant 

• NEUS, TX 
 

 
 

 
 

Power Sector AQ Impacts 
Difference in [O3] from Base   
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Impacts of Coal Generation 
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Nuclear offers emissions benefits relative to CCS deployment 
– GHG emissions comparable to slightly favorable  
– Criteria pollutant emissions generally favorable  

• SO2 equivalent, PM2.5 reductions higher for CCS 

Power Sector Scenarios 
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Nuclear Power AQ Impacts 
Improvements spatially correlated with coal plant locations 

– Peak ozone: -12 ppb 
– Peak PM2.5:  -4 μg/m3  

Difference in [O3] From Base Difference in NOx Emissions 
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AQ significantly impacted despite net emissions reductions 
Reductions in Peak [O3] 

• CA: -6 ppb 
• TX: -15 ppb 
• NEUS: -24 ppb 

 

Reductions in Peak [PM2.5] 
• CA: -6 μg/m3 
• TX: -4 μg/m3 
• NEUS: -8 μg/m3 

 
 

Transportation Sector AQ Impacts 
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AQ effects of LDV impacted by fleet evolution 
– Improved conventional vehicle (CV) emissions performance 

• Increases the relative importance of non-LDV transportation technologies  
  

Transportation Sector AQ Impacts 

4 P.M. 

Difference in [O3] (No LDV Relative to Base)  

4 P.M. 

Difference in [O3] (No Non-LDV Relative to Base)  
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Petroleum fuel refining activities significantly impact AQ   
 

  
  

Transportation Sector AQ Impacts 

4 P.M. 
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High Efficiency Case 
Transportation 

– LDV[1-3] 

• Fleet-wide efficiency 45  60 mpg (34% improvement) 
•  Total demand (VMT)  10% reduction [1-3]  

– HDV[1,4] 

• Fleet-wide efficiency 23 26 mpg (14% improvement) 
•  Total demand  20% reduction 

– Air, Marine, Rail, Off-road 
• Total demand  20% reduction 

– Refinery/Fuel Transport & Storage/Refueling Emissions 
• -24% from decreased fuel usage   

Power Generation 
– Total Demand 30% reduction[5-7] 

Residential/Commercial/Industrial 
– Total Demand 30% reduction 

• E.g., lighting, appliances, heat/cool 

References 
[1] Greene 2011 
[2] Melaina 2011 
[3] NRC 2009 
[4] Williams 2012 
[5] Google 2009 
[6] U.C.S. 2009 
[7] Greene 2009 
 
 



43/56 Advanced Power and Energy Program, Computational Environmental Sciences Laboratory - UCI 

High Efficiency GHG Impacts  
Efficiency measures can significantly reduce emissions 

– 42% reduction in total CO2 emissions (TX) 
– Upper bound case 
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AQ improvements in HE Case Relative to Base Case 
– Peak Ozone: -11 ppb 
– Peak PM2.5 : -4 μg/m3   

 
Difference in [O3] HE vs. Base Difference in [PM2.5] HE vs. Base 

 
 

High Efficiency AQ Impacts 

7 A.M. 5 P.M. 
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Driver  
LDV Fleet penetration level (%) 

Scenario Development: EV 
• 100-90% [1,2] 

• 70-50% [3,4] 

• 40-30% [5,6] 
•
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• 20-30% [6,7] 

• 15-20% [8,9] 

• 5-10% [7] 

Driver  
Grid GHG intensity  

(gCO2eq/kWh) 
References 
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Driver  
Total LDV Demand  

(VMT) 

LC: Low Carbon, Renewable (60%) and Nuclear (26%)  
NG: NGCC 
HC: High Carbon, Coal (85%) Dominates 
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30% EV 
30% PHEV-40 
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GHG impacts dependent on power sector and region 
– Per mile reductions from CVs range from 19 to 94%  
– Total LDV impacts range from +10 to -35% 

 
 

0

50

100

150

200

250

300

350

400

450

CV TX NEUS CA LC NG HC TX NEUS CA LC NG HC

gC
O

2e
/m

ile
 

Life-Cycle GHG Emissions for Electric Vehicles  

Vehicle Operation
Fuel
Feedstock

-15

-5

5

15

25

35

45

EVM-1A EVM-1LC EVM-1NG EVM-1HC%
 R

ed
uc

tio
n 

fr
om

 B
as

e 

Regional LDV Sector GHG Emissions Impacts 

CA
NEUS
TX

Electric Vehicle Scenario Impacts 

PHEV-40 EV 

LC: Low Carbon 
NG: NGCC 
HC: High Carbon 



47/56 Advanced Power and Energy Program, Computational Environmental Sciences Laboratory - UCI 

EVM 1 Average (TX) 
Spatially and temporally dependent AQ impacts 

– Peak ozone: -12 to +17 ppb 
– Peak PM2.5:  -4 to +6 μg/m3  

Difference in [O3] From Base Difference in [PM2.5] From Base 
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EVM 1 Average (CA) 
Lesser state-wide AQ impacts relative to other study regions 

– Peak ozone: -2 to + <1 ppb 
– Slight increases in peak PM2.5 

Difference in [O3] From Base 
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1. Methodology Development 
 

2. Technology Assessment   
– Emphasis on power and transportation sectors 
 

3. Evaluation of GHG and AQ Impacts 
–  Development and assessment of scenarios 
 

 

4. Air quality model sensitivity 
– Impacts of climate change 

 

Outline – Tasks  
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Initial work focused on impacts of climate change 
– Ozone and PM2.5 formation sensitivity to temperature 

• Increase of 2 oC in mean air and soil temperature 
 Impacts on peak O3 Impacts on 24-hour PM2.5 

Air Quality Model Sensitivity 
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Initial Findings 
• GHG and AQ impacts experience different trends to 2050 

– Effectiveness of mitigation strategies differs from present 
– Impacts of other (e.g., Industrial) sectors significant 

 
• Significant variability in regional impacts and strategy 

effectiveness 
– CA region may require alternative strategies for significant improvements   

 
• Linkages between sectors important 

– Co-deployment of GHG mitigation strategies across multiple sectors  
– Interactions between mobile and stationary sources 
 

• Impacts of climate change on AQ significant 
– Similar in magnitude to technology driven perturbations  
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Thank You 

Questions ? 
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